The Cauchy problem and the martingale problem for integro-differential operators with non-smooth kernels
Abels, Helmut ; Kassmann, Moritz
Osaka J. Math., Tome 46 (2009) no. 1, p. 661-683 / Harvested from Project Euclid
We consider the linear integro-differential operator $L$ defined by \begin{equation*} Lu(x) =\int_{\mathbb{R}^{n}}(u(x+y)-u(x) -\mathbbm{1}_{[1,2]}(\alpha)\mathbbm{1}_{\{|y|\leq 2\}}(y)y \cdot \nabla u(x))k(x,y)\, dy. \end{equation*} Here the kernel $k(x,y)$ behaves like $|y|^{-n-\alpha}$, $\alpha \in (0,2)$, for small $y$ and is Hölder-continuous in the first variable, precise definitions are given below. We study the unique solvability of the Cauchy problem corresponding to $L$. As an application we obtain well-posedness of the martingale problem for $L$. Our strategy follows the classical path of Stroock-Varadhan. The assumptions allow for cases that have not been dealt with so far.
Publié le : 2009-09-15
Classification:  47G20,  47G30,  60J75,  60J35,  60G07,  35K99,  35B65,  47A60
@article{1256564200,
     author = {Abels, Helmut and Kassmann, Moritz},
     title = {The Cauchy problem and the martingale problem for integro-differential operators with non-smooth kernels},
     journal = {Osaka J. Math.},
     volume = {46},
     number = {1},
     year = {2009},
     pages = { 661-683},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1256564200}
}
Abels, Helmut; Kassmann, Moritz. The Cauchy problem and the martingale problem for integro-differential operators with non-smooth kernels. Osaka J. Math., Tome 46 (2009) no. 1, pp.  661-683. http://gdmltest.u-ga.fr/item/1256564200/