Contour projected dimension reduction
Luo, Ronghua ; Wang, Hansheng ; Tsai, Chih-Ling
Ann. Statist., Tome 37 (2009) no. 1, p. 3743-3778 / Harvested from Project Euclid
In regression analysis, we employ contour projection (CP) to develop a new dimension reduction theory. Accordingly, we introduce the notions of the central contour subspace and generalized contour subspace. We show that both of their structural dimensions are no larger than that of the central subspace Cook [Regression Graphics (1998b) Wiley]. Furthermore, we employ CP-sliced inverse regression, CP-sliced average variance estimation and CP-directional regression to estimate the generalized contour subspace, and we subsequently obtain their theoretical properties. Monte Carlo studies demonstrate that the three CP-based dimension reduction methods outperform their corresponding non-CP approaches when the predictors have heavy-tailed elliptical distributions. An empirical example is also presented to illustrate the usefulness of the CP method.
Publié le : 2009-12-15
Classification:  Central subspace,  central contour subspace,  contour projection,  directional regression,  generalized contour subspace,  kernel contour subspace,  $\sqrt{n}$-consistency,  sliced average variance estimation,  sliced inverse regression,  sufficient contour subspace,  62G08,  62G35,  62G20
@article{1256303526,
     author = {Luo, Ronghua and Wang, Hansheng and Tsai, Chih-Ling},
     title = {Contour projected dimension reduction},
     journal = {Ann. Statist.},
     volume = {37},
     number = {1},
     year = {2009},
     pages = { 3743-3778},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1256303526}
}
Luo, Ronghua; Wang, Hansheng; Tsai, Chih-Ling. Contour projected dimension reduction. Ann. Statist., Tome 37 (2009) no. 1, pp.  3743-3778. http://gdmltest.u-ga.fr/item/1256303526/