On parabolic geometry, II
Biswas, Indranil
J. Math. Kyoto Univ., Tome 49 (2009) no. 1, p. 381-387 / Harvested from Project Euclid
Let $G$ be a simple linear algebraic group defined over $\mathbb{C}$ and $P$ a parabolic subgroup of it. Let $(M, E_P, \omega)$ be a holomorphic parabolic geometry of type $G/P$ over a smooth complex projective variety $M$. We prove that $(M, E_ , \omega)$ is holomorphically isomorphic to the standard parabolic geometry $(G/P, G, \omega_0)$ whenever $M$ is rationally connected. We then show that this is indeed the case if $M$ has Picard number one and contains a (possibly singular) rational curve. This last result is a generalization of the main result of [3], where we dealt with the case $G = PGL(d, \mathbb{C})$, $G/P = \mathbb{P}^{d-1}_{\mathbb{C}}$.
Publié le : 2009-05-15
Classification:  53C15,  14M17
@article{1256219163,
     author = {Biswas, Indranil},
     title = {On parabolic geometry, II},
     journal = {J. Math. Kyoto Univ.},
     volume = {49},
     number = {1},
     year = {2009},
     pages = { 381-387},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1256219163}
}
Biswas, Indranil. On parabolic geometry, II. J. Math. Kyoto Univ., Tome 49 (2009) no. 1, pp.  381-387. http://gdmltest.u-ga.fr/item/1256219163/