Hardy's inequality and embeddings in holomorphic Triebel-Lizorkin spaces
Ortega, Joaquín M. ; Fàbrega, Joan
Illinois J. Math., Tome 43 (1999) no. 3, p. 733-751 / Harvested from Project Euclid
In this work we study some properties of the holomorphic TriebeI-Lizorkin spaces $H F^{pq}_{s}$, $0 \lt p$, $q \leq \infty$, $s \in \mathbb{R}$, in the unit ball $B$ of $\mathbb{C}^{n}$, motivated by some well-known properties of the Hardy-Sobolev spaces $H^{p}_{s} = H F^{p^{2}}_{s}$, $0 \lt p \lt \infty$. ¶ We show that $\sum_{n \geq 0}|a_{n}|/(n + 1) \lesssim ||\sum_{n \geq 0}a_{n}z^{n}||_{H F^{1 \infty}_{0}}$, which improves the classical Hardy's inequality for holomorphic functions in the Hardy space $H^{1}$ in the disc. Moreover, we give a characterization of the dual of $HF^{1q}_{s}$, which includes the classical result $(H^{1})^{\ast} = \mathrm{BMOA}$. Finally, we prove some embeddings between holomorphic Triebel-Lizorkin and Besov spaces, and we apply them to obtain some trace theorems.
Publié le : 1999-12-15
Classification:  32A37,  46E15
@article{1256060689,
     author = {Ortega, Joaqu\'\i n M. and F\`abrega, Joan},
     title = {Hardy's inequality and embeddings in holomorphic Triebel-Lizorkin spaces},
     journal = {Illinois J. Math.},
     volume = {43},
     number = {3},
     year = {1999},
     pages = { 733-751},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1256060689}
}
Ortega, Joaquín M.; Fàbrega, Joan. Hardy's inequality and embeddings in holomorphic Triebel-Lizorkin spaces. Illinois J. Math., Tome 43 (1999) no. 3, pp.  733-751. http://gdmltest.u-ga.fr/item/1256060689/