Fixed point sets of conjugations
Edelson, Allan L.
Illinois J. Math., Tome 18 (1974) no. 4, p. 491-494 / Harvested from Project Euclid
An examination of the generators shows that every manifold is cobordant to the fixed point set of a conjugation on an almost complex manifold. Equivariant surgery is used to show that every $3$-manifold is diffeomorphic to such a fixed point set.
Publié le : 1974-09-15
Classification:  57D85
@article{1256051134,
     author = {Edelson, Allan L.},
     title = {Fixed point sets of conjugations},
     journal = {Illinois J. Math.},
     volume = {18},
     number = {4},
     year = {1974},
     pages = { 491-494},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1256051134}
}
Edelson, Allan L. Fixed point sets of conjugations. Illinois J. Math., Tome 18 (1974) no. 4, pp.  491-494. http://gdmltest.u-ga.fr/item/1256051134/