Fourier-Stieltjes transforms with small supports
Graham, Colin C.
Illinois J. Math., Tome 18 (1974) no. 4, p. 532-534 / Harvested from Project Euclid
Let $G$ be LCA group with dual $\Gamma$. Suppose $S\subseteq \Gamma$ is Borel set such that $S \cap (\gamma-S)$ has finite Haar measure for a dense set of $\gamma \epsilon \Gamma$ (or $S \cap (S-\gamma)$ does). If $\mu$ and $\nu$ are regular Borel measures whose Fourier-Stieltjes transforms vanish off $S$, then $|\mu|\ast|\nu|\epsilon|L^{1}(G)$ ($|\mu|$ denotes the total variation measure). This generalizes to non-metrizable groups a result of Glicksberg. Related results are given; the proofs are elementary.
Publié le : 1974-12-15
Classification:  43A25
@article{1256051003,
     author = {Graham, Colin C.},
     title = {Fourier-Stieltjes transforms with small supports},
     journal = {Illinois J. Math.},
     volume = {18},
     number = {4},
     year = {1974},
     pages = { 532-534},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1256051003}
}
Graham, Colin C. Fourier-Stieltjes transforms with small supports. Illinois J. Math., Tome 18 (1974) no. 4, pp.  532-534. http://gdmltest.u-ga.fr/item/1256051003/