Über summen von Rudin-Shapiroschen koeffizienten
Brillhart, John ; Morton, Patrick
Illinois J. Math., Tome 22 (1978) no. 4, p. 126-148 / Harvested from Project Euclid
The Rudin-Shapiro coefficients $\{a(n)\}$ are an infinite sequence of $\pm 1$'s, defined recursively by $a(0)=1$, $a(2n)=a(n)$, and $a(2n + 1)=(-1)^{n}a(n)$, $n \geq 0$ Various formulas are developed for the $n$th partial sum $s(n)$ and the $n$th alternating partial sum $t(n)$ of this sequence. These formulas are then used to show that $\sqrt{3/5} < s(n)/\surd n < \surd 6$ and $0 \leq; t(n)/\surd n < \surd 3$, $n \geq 1$ where the inequalities are sharp and the ratios are dense in the two intervals. For a given $n \geq 1$, the equation $s(k)= n$ is shown to have exactly $n$ solutions $k$.
Publié le : 1978-03-15
Classification:  10L10
@article{1256048841,
     author = {Brillhart, John and Morton, Patrick},
     title = {\"Uber summen von Rudin-Shapiroschen koeffizienten},
     journal = {Illinois J. Math.},
     volume = {22},
     number = {4},
     year = {1978},
     pages = { 126-148},
     language = {de},
     url = {http://dml.mathdoc.fr/item/1256048841}
}
Brillhart, John; Morton, Patrick. Über summen von Rudin-Shapiroschen koeffizienten. Illinois J. Math., Tome 22 (1978) no. 4, pp.  126-148. http://gdmltest.u-ga.fr/item/1256048841/