A non structure theorem for an infinitary theory which has the unsuperstability property
Grossberg, Rami ; Shelah, Saharon
Illinois J. Math., Tome 30 (1986) no. 3, p. 364-390 / Harvested from Project Euclid
Let $\kappa$, $\lambda$ be infinite cardinals, $\psi \in L_{\kappa^{+},\omega}$. We say that the sentence $\psi$ has the $\lambda$-unsuperstability property if there are $\{\varphi_{n}(\bar{\mathbf{x}},\bar{\mathbf{y}}): n < \omega\}$ quantifier free first order formulas in $L$, a model $M$ of $\psi$, and there exist $\{\bar{\mathbf{a}}_{\eta}: \eta \in^{\omega \geq} \lambda\} \subseteq |M|$ such that for all $\eta \in^{\omega}\lambda$, and for every $\nu \in^{\omega >}\lambda$, $$\nu < \eta \Leftrightarrow M \vDash \varphi_{l(\nu)}[\bar{\mathbf{a}}_{\nu},\bar{\mathbf{a}}_{\eta}].$$
Publié le : 1986-06-15
Classification:  03C45
@article{1256044645,
     author = {Grossberg, Rami and Shelah, Saharon},
     title = {A non structure theorem for an infinitary theory which has the unsuperstability property},
     journal = {Illinois J. Math.},
     volume = {30},
     number = {3},
     year = {1986},
     pages = { 364-390},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1256044645}
}
Grossberg, Rami; Shelah, Saharon. A non structure theorem for an infinitary theory which has the unsuperstability property. Illinois J. Math., Tome 30 (1986) no. 3, pp.  364-390. http://gdmltest.u-ga.fr/item/1256044645/