Total curvatures of convex hypersurfaces in hyperbolic space
Borisenko, Alexandr A. ; Miquel, Vicente
Illinois J. Math., Tome 43 (1999) no. 3, p. 61-78 / Harvested from Project Euclid
We give sharp upper estimates for the difference circumradius minus inradius and for the angle between the radial vector (respect to the center of an inball) and the normal to the boundary of a compact $h$-convex domain in the hyperpolic space. We apply these estimates to get the limit at the infinity for the quotients Volume/Area and (Total $k$-mean curvature)/Area of a family of $h$-convex domains which expand over the whole space. The theorem for the first quotient gives an extension to arbitrary dimension of a result of Santaló and Yañez for the hyperbolic plane.
Publié le : 1999-03-15
Classification:  53C65,  53C40
@article{1255985337,
     author = {Borisenko, Alexandr A. and Miquel, Vicente},
     title = {Total curvatures of convex hypersurfaces in hyperbolic space},
     journal = {Illinois J. Math.},
     volume = {43},
     number = {3},
     year = {1999},
     pages = { 61-78},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1255985337}
}
Borisenko, Alexandr A.; Miquel, Vicente. Total curvatures of convex hypersurfaces in hyperbolic space. Illinois J. Math., Tome 43 (1999) no. 3, pp.  61-78. http://gdmltest.u-ga.fr/item/1255985337/