Dense subsets of Banach $\ast$-algebras
Yood, Bertram
Illinois J. Math., Tome 43 (1999) no. 3, p. 403-409 / Harvested from Project Euclid
Some subsets of a Banach ${}^{\ast}$-algebra $A$ are shown to be dense. In the special case of the algebra of $L(H)$ of all bounded linear operators on a Hilbert space $H$, the set of all $T$ in $L(H)$ for which $T^{n}$ is quasi-normal for no positive integers $n$ is dense in $L(H)$.
Publié le : 1999-06-15
Classification:  46K05
@article{1255985222,
     author = {Yood, Bertram},
     title = {Dense subsets of Banach $\ast$-algebras},
     journal = {Illinois J. Math.},
     volume = {43},
     number = {3},
     year = {1999},
     pages = { 403-409},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1255985222}
}
Yood, Bertram. Dense subsets of Banach $\ast$-algebras. Illinois J. Math., Tome 43 (1999) no. 3, pp.  403-409. http://gdmltest.u-ga.fr/item/1255985222/