Almost everywhere convergence and boundedness of cesàro-$\alpha$ ergodic averages
Martín-Reyes, F. J. ; Gavilán, M. D. Sarrión
Illinois J. Math., Tome 43 (1999) no. 3, p. 592-611 / Harvested from Project Euclid
We study the almost everywhere convergence of the ergodic Cesàro-$\alpha$ averages $R_{n,\alpha}f = \frac{1}{A^{\alpha}_{n}}\Sigma^{n}_{i=0}{A^{\alpha-1}_{n-i}T^{i}f}$ and the boundedness of the ergodic maximal operator $M_{\alpha}f = \mathrm{sup}_{n \in \mathbb{N}}|R_{n, \alpha}f|$, associated with a positive linear operator $T$ with positive inverse on some $L^{p}(\mu)$, $1 \lt p \lt \infty$, $0 \lt \alpha \leq 1$.
Publié le : 1999-09-15
Classification:  47A35,  28D05,  37A30
@article{1255985113,
     author = {Mart\'\i n-Reyes, F. J. and Gavil\'an, M. D. Sarri\'on},
     title = {Almost everywhere convergence and boundedness of ces\`aro-$\alpha$ ergodic averages},
     journal = {Illinois J. Math.},
     volume = {43},
     number = {3},
     year = {1999},
     pages = { 592-611},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1255985113}
}
Martín-Reyes, F. J.; Gavilán, M. D. Sarrión. Almost everywhere convergence and boundedness of cesàro-$\alpha$ ergodic averages. Illinois J. Math., Tome 43 (1999) no. 3, pp.  592-611. http://gdmltest.u-ga.fr/item/1255985113/