Coboundaries for commuting transformations
Kornfeld, Isaac
Illinois J. Math., Tome 43 (1999) no. 3, p. 528-539 / Harvested from Project Euclid
Let $\tau$ and $\sigma$ be two commuting ergodic measure preserving transformations of a probablity space, and $\mathrm{Cob}(\tau)$, $\mathrm{Cob}(\sigma)$ be the sets of their coboundaries. We show that the inclusion $\mathrm{Cob}(\sigma) \subseteq \mathrm{Cob}(\tau)$ holds if and only if $\sigma = \tau^{n}$ for some $n \in \mathbb{Z}$. The transformations $\tau$ and $\sigma$ have exactly the same coboundaries if and only if $\sigma = \tau^{\pm1}$. Some related results and open questions are discussed.
Publié le : 1999-09-15
Classification:  28D05,  37A05
@article{1255985108,
     author = {Kornfeld, Isaac},
     title = {Coboundaries for commuting transformations},
     journal = {Illinois J. Math.},
     volume = {43},
     number = {3},
     year = {1999},
     pages = { 528-539},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1255985108}
}
Kornfeld, Isaac. Coboundaries for commuting transformations. Illinois J. Math., Tome 43 (1999) no. 3, pp.  528-539. http://gdmltest.u-ga.fr/item/1255985108/