Spectral integration from dominated ergodic estimates
Berkson, Earl ; Gillespie, T. A.
Illinois J. Math., Tome 43 (1999) no. 3, p. 500-519 / Harvested from Project Euclid
Suppose that $(\Omega,\mathcal{M},\mu)$ is a $\sigma$-finite measure space, $1 \lt p \lt \infty$, and $T: L^{p}(\mu) \rightarrow L^{p}(\mu)$ is a bounded, invertible, separation-preserving linear operator such that the two-sided ergodic means of the linear modulus of $T$ are uniformly bounded in norm. Using the spectral structure of $T$, we obtain a functional calculus for $T$ associated with the algebra of Marcinkiewicz multipliers defined on the unit circle$\ldots$
Publié le : 1999-09-15
Classification:  42A45,  42B25,  46E30,  47A35,  47B40
@article{1255985106,
     author = {Berkson, Earl and Gillespie, T. A.},
     title = {Spectral integration from dominated ergodic estimates},
     journal = {Illinois J. Math.},
     volume = {43},
     number = {3},
     year = {1999},
     pages = { 500-519},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1255985106}
}
Berkson, Earl; Gillespie, T. A. Spectral integration from dominated ergodic estimates. Illinois J. Math., Tome 43 (1999) no. 3, pp.  500-519. http://gdmltest.u-ga.fr/item/1255985106/