A Degenerate Neumann Problem for Quasilinear Elliptic Equations
TAIRA, Kazuaki ; PALAGACHEV, Dian K. ; POPIVANOV, Peter R.
Tokyo J. of Math., Tome 23 (2000) no. 2, p. 227-234 / Harvested from Project Euclid
The degenerate Neumann problem \[ \begin{cases} \ \displaystyle \sum_{i,j=1}^{n}a^{ij}(x)\frac{\partial^{2}u}{\partial x_i\partial x_j}=f(x,u,Du) & \text{in}\ \Omega ,\\ \ a(x)\dfrac{\partial u}{\partial v}+b(x)u=\varphi(x) & \text{on}\ \Gamma \end{cases} \] is studied in the case where $a(x)$ and $b(x)$ are non-negative functions on $\Gamma$ such that $a(x)+b(x)>0$ on $\Gamma$. A classical existence and uniqueness theorem in the Hölder space $C^{2+\alpha}(\bar{\Omega})$ is proved under suitable regularity and structure conditions on the data.
Publié le : 2000-06-15
Classification: 
@article{1255958817,
     author = {TAIRA, Kazuaki and PALAGACHEV, Dian K. and POPIVANOV, Peter R.},
     title = {A Degenerate Neumann Problem for Quasilinear Elliptic Equations},
     journal = {Tokyo J. of Math.},
     volume = {23},
     number = {2},
     year = {2000},
     pages = { 227-234},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1255958817}
}
TAIRA, Kazuaki; PALAGACHEV, Dian K.; POPIVANOV, Peter R. A Degenerate Neumann Problem for Quasilinear Elliptic Equations. Tokyo J. of Math., Tome 23 (2000) no. 2, pp.  227-234. http://gdmltest.u-ga.fr/item/1255958817/