A Representation of $Spin(4)$ on the Eigenspinors of the Dirac Operator on $S^3$
HOMMA, Yasushi
Tokyo J. of Math., Tome 23 (2000) no. 2, p. 453-472 / Harvested from Project Euclid
We construct the eigenspinors of the Dirac Operator $D_3$ on $S^3$ from a representation theoretical point of view and give a representation of $Spin(4)$ on them explicitly. These eigenspinors are extended to zero mode spinors of the Dirac operator $D_{4}^{\pm}$ on upper or lower hemisphere of $S^4$.
Publié le : 2000-12-15
Classification: 
@article{1255958682,
     author = {HOMMA, Yasushi},
     title = {A Representation of $Spin(4)$ on the Eigenspinors of the Dirac Operator on $S^3$},
     journal = {Tokyo J. of Math.},
     volume = {23},
     number = {2},
     year = {2000},
     pages = { 453-472},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1255958682}
}
HOMMA, Yasushi. A Representation of $Spin(4)$ on the Eigenspinors of the Dirac Operator on $S^3$. Tokyo J. of Math., Tome 23 (2000) no. 2, pp.  453-472. http://gdmltest.u-ga.fr/item/1255958682/