Criss-Cross Reduction of the Maslov Index and a Proof of the Yoshida-Nicolaescu Theorem
BOOSS-BAVNBEK, Bernhelm ; FURUTANI, Kenro ; OTSUKI, Nobukazu
Tokyo J. of Math., Tome 24 (2001) no. 2, p. 113-128 / Harvested from Project Euclid
We consider direct sum decompositions $\beta=\beta_{-}+\beta_{+}$ and $L=L_{-}+L_{+}$ of two symplectic Hilbert spaces by Lagrangian subspaces with dense embeddings $\beta_{-}\hookrightarrow L-$ and $L_{+}\hookrightarrow\beta_{+}$. We show that such criss-cross embeddings induce a continuous mapping between the Fredholm Lagrangian Grassmannians $\mathcal{F}\mathcal{L}_{\beta_{-}}(\beta)$ and $\mathcal{F}\mathcal{L}_{L_{-}}(L)$ which preserves the Maslov index for curves. This gives a slight generalization and a new proof of the Yoshida-Nicolaescu Spectral Flow Formula for families of Dirac operators over partitioned manifolds.
Publié le : 2001-06-15
Classification: 
@article{1255958316,
     author = {BOOSS-BAVNBEK, Bernhelm and FURUTANI, Kenro and OTSUKI, Nobukazu},
     title = {Criss-Cross Reduction of the Maslov Index and a Proof of the Yoshida-Nicolaescu Theorem},
     journal = {Tokyo J. of Math.},
     volume = {24},
     number = {2},
     year = {2001},
     pages = { 113-128},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1255958316}
}
BOOSS-BAVNBEK, Bernhelm; FURUTANI, Kenro; OTSUKI, Nobukazu. Criss-Cross Reduction of the Maslov Index and a Proof of the Yoshida-Nicolaescu Theorem. Tokyo J. of Math., Tome 24 (2001) no. 2, pp.  113-128. http://gdmltest.u-ga.fr/item/1255958316/