Triple Hilbert transforms along polynomial surfaces in $\mathbb{R}^4$
Rev. Mat. Iberoamericana, Tome 25 (2009) no. 1, p. 471-519 / Harvested from Project Euclid
We investigate the $L^2$ boundedness of the triple Hilbert transform along the surface given by the graph of a real polynomial $P$ of three variables. We are interested in understanding the relationship between the geometric properties of the Newton polyhedron of $P$ and the analytic property of $L^2$ boundedness.
Publié le : 2009-06-15
Classification:  Hilbert transform,  Newton polyhedron,  oscillatory integrals,  42B15
@article{1255440065,
     author = {Carbery
,  
Anthony and Wainger
,  
Stephen and Wright
,  
James},
     title = {Triple Hilbert transforms along polynomial surfaces in $\mathbb{R}^4$},
     journal = {Rev. Mat. Iberoamericana},
     volume = {25},
     number = {1},
     year = {2009},
     pages = { 471-519},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1255440065}
}
Carbery
,  
Anthony; Wainger
,  
Stephen; Wright
,  
James. Triple Hilbert transforms along polynomial surfaces in $\mathbb{R}^4$. Rev. Mat. Iberoamericana, Tome 25 (2009) no. 1, pp.  471-519. http://gdmltest.u-ga.fr/item/1255440065/