The best constant of Sobolev inequality corresponding to clamped-free boundary value problem for (-1) M (d/dx) 2M
Takemura, Kazuo
Proc. Japan Acad. Ser. A Math. Sci., Tome 85 (2009) no. 2, p. 112-117 / Harvested from Project Euclid
Green function of the clamped-free boundary value problem for (-1)M(d/dx)2M on the interval (-1,1) is obtained. Its Green function is a reproducing kernel for a suitable set of Hilbert space and an inner product. By using the fact, the best constant of Sobolev inequality corresponding to this boundary value problem is obtained as a function of M. The best constant is the maximal value of the diagonal value G(y,y) of Green function G(x,y).
Publié le : 2009-10-15
Classification:  Sobolev inequality,  best constant,  Green function,  reproducing kernel,  LU decomposition,  34B05,  34B27,  46E22
@article{1254491215,
     author = {Takemura, Kazuo},
     title = {The best constant of Sobolev inequality corresponding to clamped-free boundary value problem for (-1)<sup>
 M
</sup>(d/dx)<sup>
 2M
</sup>},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {85},
     number = {2},
     year = {2009},
     pages = { 112-117},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1254491215}
}
Takemura, Kazuo. The best constant of Sobolev inequality corresponding to clamped-free boundary value problem for (-1)
 M
(d/dx)
 2M
. Proc. Japan Acad. Ser. A Math. Sci., Tome 85 (2009) no. 2, pp.  112-117. http://gdmltest.u-ga.fr/item/1254491215/