Common bounded universal functions for composition operators
Bayart, Frédéric ; Grivaux, Sophie ; Mortini, Raymond
Illinois J. Math., Tome 52 (2008) no. 1, p. 995-1006 / Harvested from Project Euclid
Let $\mathcal{A}$ be the set of automorphisms of the unit disk with 1 as attractive fixed point. We prove that there exists a single Blaschke product that is universal for every composition operator Cϕ, $\phi\in\mathcal{A}$ , acting on the unit ball of $H^{\infty}(\mathbb{D})$ .
Publié le : 2008-05-15
Classification:  47A16,  47B33
@article{1254403727,
     author = {Bayart, Fr\'ed\'eric and Grivaux, Sophie and Mortini, Raymond},
     title = {Common bounded universal functions for composition operators},
     journal = {Illinois J. Math.},
     volume = {52},
     number = {1},
     year = {2008},
     pages = { 995-1006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1254403727}
}
Bayart, Frédéric; Grivaux, Sophie; Mortini, Raymond. Common bounded universal functions for composition operators. Illinois J. Math., Tome 52 (2008) no. 1, pp.  995-1006. http://gdmltest.u-ga.fr/item/1254403727/