Aronsson’s equations on Carnot–Carathéodory spaces
Wang, Changyou ; Yu, Yifeng
Illinois J. Math., Tome 52 (2008) no. 1, p. 757-772 / Harvested from Project Euclid
Let (Rn, dX) be a Carnot–Carathéodory metric space generated by a family of smooth vector fields {Xi}i=1m satisfying Hörmander’s finite rank condition, and $\mathcal{H}_{X}=\{(x,\sum_{i=1}^{m}a_{i}X_{i}(x))|x\in\mathbf{R}^{n},(a_{i})_{i=1}^{m}\in\mathbf{R}^{m}\}$ be the horizontal tangent bundle generated by {Xi}i=1m. Assume that $H=H(x,p)\in C^{1}(\mathcal{H}_{X})$ is quasiconvex in p-variable. We prove that any absolute minimizer u∈WX1, ∞(Ω) to F(v, Ω)=ess supx∈ΩH(x, Xv(x)) is a viscosity solution of the Aronsson equation ¶ \[\mathcal{A}^{X}[u]:=X(H(x,Xu(x)))\cdot H_{p}(x,Xu(x))=0\quad\hbox{in }\Omega.\]
Publié le : 2008-05-15
Classification:  35J,  49L
@article{1254403713,
     author = {Wang, Changyou and Yu, Yifeng},
     title = {Aronsson's equations on Carnot--Carath\'eodory spaces},
     journal = {Illinois J. Math.},
     volume = {52},
     number = {1},
     year = {2008},
     pages = { 757-772},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1254403713}
}
Wang, Changyou; Yu, Yifeng. Aronsson’s equations on Carnot–Carathéodory spaces. Illinois J. Math., Tome 52 (2008) no. 1, pp.  757-772. http://gdmltest.u-ga.fr/item/1254403713/