We show that the Cauchy integral operator is bounded from $H^p(R^1)$ to $h^p(R^1)$ (local Hardy space). To prove our theorem we shall introduce generalized atom and consider a variant of "$Tb$ theorem".
Publié le : 2008-05-15
Classification:
the Cauchy integral,
Calderón-Zygmund operator,
Hardy space,
local Hardy space,
42B20
@article{1253539561,
author = {KOMORI, Yasuo},
title = {The Cauchy integral operator on Hardy space},
journal = {Hokkaido Math. J.},
volume = {37},
number = {4},
year = {2008},
pages = { 389-398},
language = {en},
url = {http://dml.mathdoc.fr/item/1253539561}
}
KOMORI, Yasuo. The Cauchy integral operator on Hardy space. Hokkaido Math. J., Tome 37 (2008) no. 4, pp. 389-398. http://gdmltest.u-ga.fr/item/1253539561/