The Cauchy integral operator on Hardy space
KOMORI, Yasuo
Hokkaido Math. J., Tome 37 (2008) no. 4, p. 389-398 / Harvested from Project Euclid
We show that the Cauchy integral operator is bounded from $H^p(R^1)$ to $h^p(R^1)$ (local Hardy space). To prove our theorem we shall introduce generalized atom and consider a variant of "$Tb$ theorem".
Publié le : 2008-05-15
Classification:  the Cauchy integral,  Calderón-Zygmund operator,  Hardy space,  local Hardy space,  42B20
@article{1253539561,
     author = {KOMORI, Yasuo},
     title = {The Cauchy integral operator on Hardy space},
     journal = {Hokkaido Math. J.},
     volume = {37},
     number = {4},
     year = {2008},
     pages = { 389-398},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1253539561}
}
KOMORI, Yasuo. The Cauchy integral operator on Hardy space. Hokkaido Math. J., Tome 37 (2008) no. 4, pp.  389-398. http://gdmltest.u-ga.fr/item/1253539561/