The zero modes and zero resonances of massless Dirac operators
SAITŌ, Yoshimi ; UMEDA, Tomio
Hokkaido Math. J., Tome 37 (2008) no. 4, p. 363-388 / Harvested from Project Euclid
The zero modes and zero resonances of the Dirac operator $H=\alpha\cdot D + Q(x)$ are discussed, where $\alpha= (\alpha_1, \, \alpha_2, \, \alpha_3)$ is the triple of $4 \times 4$ Dirac matrices, $D=\frac{1}{i} ∇_x$, and $Q(x)=( q_{jk} (x))$ is a $4\times 4$ Hermitian matrix-valued function with $| q_{jk}(x) | \le C \langle x \rangle^{-\rho}$, $\rho >1$. We shall show that every zero mode $f(x)$ is continuous on ${\mathbb R}^3$ and decays at infinity with the decay rate $|x|^{-2}$. Also, we shall show that $H$ has no zero resonance if $ρ > 3/2$.
Publié le : 2008-05-15
Classification:  Dirac operators,  Weyl-Dirac operators,  zero modes,  zero resonances,  the limiting absorption principle,  35Q40,  35P99,  81Q10
@article{1253539560,
     author = {SAIT\=O, Yoshimi and UMEDA, Tomio},
     title = {The zero modes and zero resonances of massless Dirac operators},
     journal = {Hokkaido Math. J.},
     volume = {37},
     number = {4},
     year = {2008},
     pages = { 363-388},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1253539560}
}
SAITŌ, Yoshimi; UMEDA, Tomio. The zero modes and zero resonances of massless Dirac operators. Hokkaido Math. J., Tome 37 (2008) no. 4, pp.  363-388. http://gdmltest.u-ga.fr/item/1253539560/