$C^{\ell}$-$G$-triviality of map germs and Newton polyhedra, $G = \mathcal R$, $\mathcal C$ and $\mathcal K$
SAIA, Marcelo José ; JÚNIOR, Carlos Humberto Soares
Hokkaido Math. J., Tome 37 (2008) no. 4, p. 331-348 / Harvested from Project Euclid
We provide estimates for the $C^{\ell}$-$G$-triviality, for $ 0 \leq \ell < \infty$ and $G$ is one of Mather's groups ${\mathcal R}$, ${\mathcal C}$ or ${\mathcal K}$, of deformations of analytic map germs $f: (\mathbb{R}^n,0) \to (\mathbb{R}^p,0)$ of type $f_t(x)=f(x)+θ(x,t)$ which satisfy a non-degeneracy condition with respect to some Newton polyhedron. We apply the method of construction of controlled vector fields and, for each group $G$, the control function is determined from the choice of a convenient {\it Newton filtration } in the ring of real analytic germs. The results are given in terms of the filtration of the coordinate function germs $f_1, \ldots , f_p$ of $f$.
Publié le : 2008-05-15
Classification:  $C^{\ell}$-determinacy,  Newton filtration,  controlled vector fields,  58C27
@article{1253539558,
     author = {SAIA, Marcelo Jos\'e and J\'UNIOR, Carlos Humberto Soares},
     title = {$C^{\ell}$-$G$-triviality of map germs and Newton polyhedra, $G = \mathcal R$, $\mathcal C$ and $\mathcal K$},
     journal = {Hokkaido Math. J.},
     volume = {37},
     number = {4},
     year = {2008},
     pages = { 331-348},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1253539558}
}
SAIA, Marcelo José; JÚNIOR, Carlos Humberto Soares. $C^{\ell}$-$G$-triviality of map germs and Newton polyhedra, $G = \mathcal R$, $\mathcal C$ and $\mathcal K$. Hokkaido Math. J., Tome 37 (2008) no. 4, pp.  331-348. http://gdmltest.u-ga.fr/item/1253539558/