Algebraic $K$-theory and cubical descent
Pascual, Pere ; Pons, Llorenç Rubió
Homology Homotopy Appl., Tome 11 (2009) no. 1, p. 5-25 / Harvested from Project Euclid
In this note we apply the Guillén-Navarro descent theorem to define a descent variant of the algebraic $K$-theory of varieties over a field of characteristic zero, $KD(X)$, which coincides with $K(X)$ for smooth varieties and to prove that there is a natural weight filtration on the groups $KD*(X)$. After a result of Haesemeyer, we deduce that this theory is equivalent to the homotopy algebraic $K$-theory introduced by Weibel.
Publié le : 2009-05-15
Classification:  Algebraic $K$-theory,  descent,  weight filtration,  19D55,  18G60,  14F
@article{1251832590,
     author = {Pascual, Pere and Pons, Lloren\c c Rubi\'o},
     title = {Algebraic $K$-theory and cubical descent},
     journal = {Homology Homotopy Appl.},
     volume = {11},
     number = {1},
     year = {2009},
     pages = { 5-25},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1251832590}
}
Pascual, Pere; Pons, Llorenç Rubió. Algebraic $K$-theory and cubical descent. Homology Homotopy Appl., Tome 11 (2009) no. 1, pp.  5-25. http://gdmltest.u-ga.fr/item/1251832590/