Gorenstein homological dimension and Ext-depth of modules
Mafi, Amir
Bull. Belg. Math. Soc. Simon Stevin, Tome 16 (2009) no. 1, p. 557-564 / Harvested from Project Euclid
Let $(R,{\frak{m}},k)$ be a commutative Noetherian local ring. It is well-known that $R$ is regular if and only if the flat dimension of $k$ is finite. In this paper, we show that $R$ is Gorenstein if and only if the Gorenstein flat dimension of $k$ is finite. Also, we will show that if $R$ is a Cohen-Macaulay ring and $M$ is a Tor-finite $R$-module of finite Gorenstein flat dimension, then the depth of the ring is equal to the sum of the Gorenstein flat dimension and Ext-depth of $M$. As a consequence, we get that this formula holds for every syzygy of a finitely generated $R$-module over a Gorenstein local ring.
Publié le : 2009-08-15
Classification:  Gorenstein flat,  Auslander-Bridger formula,  Cohen-Macaulay,  Depth,  13C11,  13C13,  13C15,  13H10
@article{1251832379,
     author = {Mafi, Amir},
     title = {Gorenstein homological dimension and Ext-depth of modules},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {16},
     number = {1},
     year = {2009},
     pages = { 557-564},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1251832379}
}
Mafi, Amir. Gorenstein homological dimension and Ext-depth of modules. Bull. Belg. Math. Soc. Simon Stevin, Tome 16 (2009) no. 1, pp.  557-564. http://gdmltest.u-ga.fr/item/1251832379/