For a locally compact semigroup $\frak S$, we study a fixed point
property in terms of left Banach $\frak S$-modules; we also use this
property to give a characterization for inner amenability of $\frak S$.
Publié le : 2009-08-15
Classification:
Fixed point property,
inner amenability,
inner invariant mean,
left Banach modules,
locally compact semigroup,
weak$^*$ operator topology,
43A07,
43A10,
43A20,
46H05
@article{1251832377,
author = {Mohammadzadeh, B. and Nasr-Isfahani, R.},
title = {A fixed point property characterizing inner amenable locally compact
semigroups},
journal = {Bull. Belg. Math. Soc. Simon Stevin},
volume = {16},
number = {1},
year = {2009},
pages = { 525-532},
language = {en},
url = {http://dml.mathdoc.fr/item/1251832377}
}
Mohammadzadeh, B.; Nasr-Isfahani, R. A fixed point property characterizing inner amenable locally compact
semigroups. Bull. Belg. Math. Soc. Simon Stevin, Tome 16 (2009) no. 1, pp. 525-532. http://gdmltest.u-ga.fr/item/1251832377/