A fixed point property characterizing inner amenable locally compact semigroups
Mohammadzadeh, B. ; Nasr-Isfahani, R.
Bull. Belg. Math. Soc. Simon Stevin, Tome 16 (2009) no. 1, p. 525-532 / Harvested from Project Euclid
For a locally compact semigroup $\frak S$, we study a fixed point property in terms of left Banach $\frak S$-modules; we also use this property to give a characterization for inner amenability of $\frak S$.
Publié le : 2009-08-15
Classification:  Fixed point property,  inner amenability,  inner invariant mean,  left Banach modules,  locally compact semigroup,  weak$^*$ operator topology,  43A07,  43A10,  43A20,  46H05
@article{1251832377,
     author = {Mohammadzadeh, B. and Nasr-Isfahani, R.},
     title = {A fixed point property characterizing inner amenable locally compact
 semigroups},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {16},
     number = {1},
     year = {2009},
     pages = { 525-532},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1251832377}
}
Mohammadzadeh, B.; Nasr-Isfahani, R. A fixed point property characterizing inner amenable locally compact
 semigroups. Bull. Belg. Math. Soc. Simon Stevin, Tome 16 (2009) no. 1, pp.  525-532. http://gdmltest.u-ga.fr/item/1251832377/