Sequences of some meromorphic function spaces
El-Sayed Ahmed, A. ; Bakhit, M. A.
Bull. Belg. Math. Soc. Simon Stevin, Tome 16 (2009) no. 1, p. 395-408 / Harvested from Project Euclid
Our goal in this paper is to introduce some new sequences of some meromorphic function spaces, which will be called $b_q$ and $q_{K}$-sequences. Our study is motivated by the theories of normal, $Q^{\#}_K$ and meromorphic Besov functions. For a non-normal function $f$ the sequences of points $\{a_n\}$ and $\{b_n\}$ for which $$\lim_{n\rightarrow \infty}(1-|a_n|^2)f^{\#}(a_n)=+\infty\,\,\,\mbox{and} $$ $$ \lim_{n\rightarrow\infty}\iint_\Delta \bigl(f^{\#}(z)\bigr)^q (1-|z|^2)^{q-2}(1-|\varphi_{a_n}(z)|^2)^s dA(z)=+\infty\;$$ or $$ \lim_{n\rightarrow\infty}\iint_\Delta \bigl(f^{\#}(z)\bigr)^2 K(z,a_n)dA(z)=+\infty\;$$ are considered and compared with each other. Finally, non-normal meromorphic functions are described in terms of the distribution of the values of these meromorphic functions.
Publié le : 2009-08-15
Classification:  $b_q, q_K$ -sequences,  meromorphic functions,  Besov classes,  30D45,  46E15
@article{1251832367,
     author = {El-Sayed Ahmed, A. and Bakhit, M. A.},
     title = {Sequences of some meromorphic function spaces},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {16},
     number = {1},
     year = {2009},
     pages = { 395-408},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1251832367}
}
El-Sayed Ahmed, A.; Bakhit, M. A. Sequences of some meromorphic function spaces. Bull. Belg. Math. Soc. Simon Stevin, Tome 16 (2009) no. 1, pp.  395-408. http://gdmltest.u-ga.fr/item/1251832367/