p, ∞≤2‖M‖p ¶ and the constant is the best possible. ¶ (ii) If M≥0 and p≥2, then ¶ \[\Vert N\Vert_{p,\infty}\leq\frac{p}{2}(p-1)^{-1/p}\Vert M\Vert_{p}\] ¶ and the constant is the best possible. ¶ (iii) If 1≤p≤2 and M and N are orthogonal, then ¶ ‖N‖p, ∞≤Kp‖M‖p ¶ where ¶ \[K_{p}^{p}=\frac{1}{\Gamma(p+1)}\cdot\biggl(\frac{\pi}{2}\biggr)^{p-1}\cdot\frac{1+1/3^{2}+1/5^{2}+1/7^{2}+\cdots}{1-1/3^{p+1}+1/5^{p+1}-1/7^{p+1}+\cdots}.\] ¶ The constant is the best possible. ¶ We also provide related estimates for harmonic functions on Euclidean domains.
@article{1251463285, author = {Osekowski, Adam}, title = {Sharp weak-type inequalities for differentially subordinated martingales}, journal = {Bernoulli}, volume = {15}, number = {1}, year = {2009}, pages = { 871-897}, language = {en}, url = {http://dml.mathdoc.fr/item/1251463285} }
Osȩkowski, Adam. Sharp weak-type inequalities for differentially subordinated martingales. Bernoulli, Tome 15 (2009) no. 1, pp. 871-897. http://gdmltest.u-ga.fr/item/1251463285/