The Dantzig selector and sparsity oracle inequalities
Koltchinskii, Vladimir
Bernoulli, Tome 15 (2009) no. 1, p. 799-828 / Harvested from Project Euclid
Let ¶ Yj=f*(Xj)+ξj,  j=1, …, n, ¶ where X, X1, …, Xn are i.i.d. random variables in a measurable space $(S,\mathcal{A})$ with distribution Π and ξ, ξ1, …, ξn are i.i.d. random variables with ${\mathbb{E}}\xi=0$ independent of (X1, …, Xn). Given a dictionary h1, …, hN: S↦ℝ, let fλ:=∑j=1Nλjhj, λ=(λ1, …, λN)∈ℝN. Given ɛ>0, define ¶ ̂Λɛ:={λ∈ℝN: max1≤k≤N|n−1j=1n(fλ(Xj)−Yj)hk(Xj)|≤ɛ} ¶ and ¶ ̂λ:=̂λɛ∈Argminλ∈̂Λɛ‖λ‖1. ¶ In the case where f*:=fλ*, λ*∈ℝN, Candes and Tao [Ann. Statist. 35 (2007) 2313–2351] suggested using ̂λ as an estimator of λ*. They called this estimator “the Dantzig selector”. We study the properties of f̂λ as an estimator of f* for regression models with random design, extending some of the results of Candes and Tao (and providing alternative proofs of these results).
Publié le : 2009-08-15
Classification:  Dantzig selector,  oracle inequalities,  regression,  sparsity
@article{1251463282,
     author = {Koltchinskii, Vladimir},
     title = {The Dantzig selector and sparsity oracle inequalities},
     journal = {Bernoulli},
     volume = {15},
     number = {1},
     year = {2009},
     pages = { 799-828},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1251463282}
}
Koltchinskii, Vladimir. The Dantzig selector and sparsity oracle inequalities. Bernoulli, Tome 15 (2009) no. 1, pp.  799-828. http://gdmltest.u-ga.fr/item/1251463282/