Modulo odd prime homotopy normality for $H$-spaces
Kudou, Kenji ; Yagita, Nobuaki
J. Math. Kyoto Univ., Tome 38 (1998) no. 4, p. 643-651 / Harvested from Project Euclid
Given an $H$-map $i : Y \to X$, we say that $i$ is mod $p$ homotopy normal if the commutator map from $X_{(p)}\times Y_{(9)}$ to $X_{(p)}$ can be deformed into $Y_{(p)}$. In this paper, we study necessary conditions of mod $p$ homotopy normality for the cases that $X$ are exceptional Lie groups with odd torsion in the cohomology, by using the Morava K-theory.
Publié le : 1998-05-15
Classification:  55P45,  55P60
@article{1250518002,
     author = {Kudou, Kenji and Yagita, Nobuaki},
     title = {Modulo odd prime homotopy normality for $H$-spaces},
     journal = {J. Math. Kyoto Univ.},
     volume = {38},
     number = {4},
     year = {1998},
     pages = { 643-651},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250518002}
}
Kudou, Kenji; Yagita, Nobuaki. Modulo odd prime homotopy normality for $H$-spaces. J. Math. Kyoto Univ., Tome 38 (1998) no. 4, pp.  643-651. http://gdmltest.u-ga.fr/item/1250518002/