The cohomology of $BO (n)$ with twisted integer coefficients
Čadek, Martin
J. Math. Kyoto Univ., Tome 39 (1999) no. 4, p. 277-286 / Harvested from Project Euclid
Let $H^{*}(BO(n), \mathbf{Z}^{t})$ be the graded cohomology group of the classifying space $BO(n)$ with twisted integer coefficients. Then $H^{*}(BO(n); \mathbf{Z}) \bigoplus H^{*}(BO(n); \mathbf{Z}^{t})$ has a structure of a $\mathbf{Z} \bigoplus \mathbf{Z}_{2}$ graded ring. In the paper this ring is described in terms of generators and relations. It extends the results on the integer cohomology ring $H^{*}(BO(n); \mathbf{Z})$ derived in [B] and [F].
Publié le : 1999-05-15
Classification:  55R40,  57R20
@article{1250517912,
     author = {\v Cadek, Martin},
     title = {The cohomology of $BO (n)$ with twisted integer coefficients},
     journal = {J. Math. Kyoto Univ.},
     volume = {39},
     number = {4},
     year = {1999},
     pages = { 277-286},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250517912}
}
Čadek, Martin. The cohomology of $BO (n)$ with twisted integer coefficients. J. Math. Kyoto Univ., Tome 39 (1999) no. 4, pp.  277-286. http://gdmltest.u-ga.fr/item/1250517912/