Global existence and convergence of solutions of Calabi flow on surfaces of genus $h\geq 2$
Chang, Shu-Cheng
J. Math. Kyoto Univ., Tome 40 (2000) no. 4, p. 363-377 / Harvested from Project Euclid
In this paper, based on a kind of Harnack estimate for the Calabi flow on surfaces, we show the longtime existence and convergence of solutions of 2-dimensional Calabi flow on surfaces $(\Sigma ,g_{0})$ of genus $h \geq 2$ with any arbitrary background metric $g_{0}$.
Publié le : 2000-05-15
Classification:  53C44
@article{1250517718,
     author = {Chang, Shu-Cheng},
     title = {Global existence and convergence of solutions of Calabi flow on surfaces of genus $h\geq 2$},
     journal = {J. Math. Kyoto Univ.},
     volume = {40},
     number = {4},
     year = {2000},
     pages = { 363-377},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250517718}
}
Chang, Shu-Cheng. Global existence and convergence of solutions of Calabi flow on surfaces of genus $h\geq 2$. J. Math. Kyoto Univ., Tome 40 (2000) no. 4, pp.  363-377. http://gdmltest.u-ga.fr/item/1250517718/