Estimates of invariant metrics on pseudoconvex domains with comparable Levi form
Cho, Sanghyun
J. Math. Kyoto Univ., Tome 42 (2002) no. 4, p. 337-349 / Harvested from Project Euclid
Let $\Omega$ be a smoothly bounded pseudoconvex domain in $\mathbb{C}^{n}$ and let $z_{0} \in b\Omega$ be a point of finite type. We also assume that the Levi form of $b\Omega$ is comparable in a neighborhood of $z_{0}$. Then we get a quantity which bounds from above and below the Bergman metric, Caratheodory metric and Kobayashi metric in a small constant and large constant sense.
Publié le : 2002-05-15
Classification:  32F45,  32T25
@article{1250283875,
     author = {Cho, Sanghyun},
     title = {Estimates of invariant metrics on pseudoconvex domains with comparable Levi form},
     journal = {J. Math. Kyoto Univ.},
     volume = {42},
     number = {4},
     year = {2002},
     pages = { 337-349},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250283875}
}
Cho, Sanghyun. Estimates of invariant metrics on pseudoconvex domains with comparable Levi form. J. Math. Kyoto Univ., Tome 42 (2002) no. 4, pp.  337-349. http://gdmltest.u-ga.fr/item/1250283875/