Weak approximation, Brauer and R-equivalence in algebraic groups over arithmetical fields, II
Thǎńg, Nguyêñ Quôć
J. Math. Kyoto Univ., Tome 42 (2002) no. 4, p. 305-316 / Harvested from Project Euclid
In this paper we prove that certain natural birational and arithmetic invariants of connected subgroups of linear algebraic groups all defined over a local or global field of characteristic 0 are bounded in terms of the ambient group and the base field.
Publié le : 2002-05-15
Classification:  11E72,  20G10
@article{1250283872,
     author = {Th\v a\'ng, Nguy\^e\~n Qu\^o\'c},
     title = {Weak approximation, Brauer and R-equivalence in algebraic groups over arithmetical fields, II},
     journal = {J. Math. Kyoto Univ.},
     volume = {42},
     number = {4},
     year = {2002},
     pages = { 305-316},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250283872}
}
Thǎńg, Nguyêñ Quôć. Weak approximation, Brauer and R-equivalence in algebraic groups over arithmetical fields, II. J. Math. Kyoto Univ., Tome 42 (2002) no. 4, pp.  305-316. http://gdmltest.u-ga.fr/item/1250283872/