Spaces of polynomials without 3-fold real roots
Hirata, Koichi ; Yamaguchi, Kohhei
J. Math. Kyoto Univ., Tome 42 (2002) no. 4, p. 509-516 / Harvested from Project Euclid
Let $P_{n}^{d}(\mathbb{R})$ denote the space consisiting of all monic polynomials $f(z) \in \mathbb{R}[z]$ of degree $d$ which have no real roots of multplicity $\geq n$. In this paper we study the homotopy types of the spaces $P_{n}^{d}(\mathbb{R})$ for the case $n = 3$.
Publié le : 2002-05-15
Classification:  55P10,  55P15,  55P35
@article{1250283847,
     author = {Hirata, Koichi and Yamaguchi, Kohhei},
     title = {Spaces of polynomials without 3-fold real roots},
     journal = {J. Math. Kyoto Univ.},
     volume = {42},
     number = {4},
     year = {2002},
     pages = { 509-516},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250283847}
}
Hirata, Koichi; Yamaguchi, Kohhei. Spaces of polynomials without 3-fold real roots. J. Math. Kyoto Univ., Tome 42 (2002) no. 4, pp.  509-516. http://gdmltest.u-ga.fr/item/1250283847/