Area preserving monotone twist diffeomorphisms without non-Birkhoff periodic points
Asaoka, Masayuki
J. Math. Kyoto Univ., Tome 42 (2002) no. 4, p. 703-714 / Harvested from Project Euclid
Let $f$ be an area preserving monotone twist diffeomorphism on the annulus. In this paper, we prove the equivalence of the following three conditions: (i) the ;annulus is foliated by circles invariant under $f$. (ii) any periodic point of $f$ is of Birkhoff type, and (iii) all iterations $f^{n}$ are twist diffeomorphisms.
Publié le : 2002-05-15
Classification:  37E40,  37J10
@article{1250283834,
     author = {Asaoka, Masayuki},
     title = {Area preserving monotone twist diffeomorphisms without non-Birkhoff periodic points},
     journal = {J. Math. Kyoto Univ.},
     volume = {42},
     number = {4},
     year = {2002},
     pages = { 703-714},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250283834}
}
Asaoka, Masayuki. Area preserving monotone twist diffeomorphisms without non-Birkhoff periodic points. J. Math. Kyoto Univ., Tome 42 (2002) no. 4, pp.  703-714. http://gdmltest.u-ga.fr/item/1250283834/