On phantom maps into suspension spaces
Iriye, Kouyemon
J. Math. Kyoto Univ., Tome 43 (2003) no. 4, p. 661-669 / Harvested from Project Euclid
We show that there is an essential phantom map $f : K(Z, n) \to \Sigma Y$ for a suitable $n$ if $H_{i}(Y;\mathbb{Q})\neq 0$ for some $i > 0$. The localized version of this problem is also considered. The ingredient of the proof is the computation of the Morava K-theories of the Eilenberg-MacLane spaces by Ravenel and Wilson.
Publié le : 2003-05-15
Classification:  55S37,  55P20,  55P60
@article{1250283701,
     author = {Iriye, Kouyemon},
     title = {On phantom maps into suspension spaces},
     journal = {J. Math. Kyoto Univ.},
     volume = {43},
     number = {4},
     year = {2003},
     pages = { 661-669},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250283701}
}
Iriye, Kouyemon. On phantom maps into suspension spaces. J. Math. Kyoto Univ., Tome 43 (2003) no. 4, pp.  661-669. http://gdmltest.u-ga.fr/item/1250283701/