$G$-complexes with a compatible CW structure
Cencelj, Matija ; Mramor Kosta, Neža ; Vavpetič, Aleš
J. Math. Kyoto Univ., Tome 43 (2003) no. 4, p. 585-597 / Harvested from Project Euclid
If $G$ is a toral group, i.e. an extension of a torus by a finite group, and $X$ is a $G$-CW complex we prove that there exists a $G$-homotopy equivalent CW complex $Y$ with the property that the action map $\rho : G\times Y \to Y$ is a cellular map.
Publié le : 2003-05-15
Classification:  55P91
@article{1250283696,
     author = {Cencelj, Matija and Mramor Kosta, Ne\v za and Vavpeti\v c, Ale\v s},
     title = {$G$-complexes with a compatible CW structure},
     journal = {J. Math. Kyoto Univ.},
     volume = {43},
     number = {4},
     year = {2003},
     pages = { 585-597},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250283696}
}
Cencelj, Matija; Mramor Kosta, Neža; Vavpetič, Aleš. $G$-complexes with a compatible CW structure. J. Math. Kyoto Univ., Tome 43 (2003) no. 4, pp.  585-597. http://gdmltest.u-ga.fr/item/1250283696/