Analytic Jacobi Eisenstein series and the Shimura method
Heim, Bernhard E.
J. Math. Kyoto Univ., Tome 43 (2003) no. 4, p. 451-464 / Harvested from Project Euclid
In this paper it is proven that analytic Jacobi Eisenstein series always admit a meromorphic continuation on the whole complex plane and statements about the location of possible poles are given. Moreover a new interpretation of Shimura’s approach to the standard L-function of a Siegel modular form is presented.
Publié le : 2003-05-15
Classification:  11F50,  11M36
@article{1250283689,
     author = {Heim, Bernhard E.},
     title = {Analytic Jacobi Eisenstein series and the Shimura method},
     journal = {J. Math. Kyoto Univ.},
     volume = {43},
     number = {4},
     year = {2003},
     pages = { 451-464},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250283689}
}
Heim, Bernhard E. Analytic Jacobi Eisenstein series and the Shimura method. J. Math. Kyoto Univ., Tome 43 (2003) no. 4, pp.  451-464. http://gdmltest.u-ga.fr/item/1250283689/