Homotopy exponents of Harper’s spaces
Theriault, Stephen D.
J. Math. Kyoto Univ., Tome 44 (2004) no. 4, p. 33-42 / Harvested from Project Euclid
For an odd prime $p$, we show that the $p$-primary homotopy exponent of Harper’s rank 2 finite mod-$p$ $H$-space $K_{p}$ is $p^{p^{2}+p}$. We then use this to show that the 3-primary homotopy exponent of each of the exceptional Lie groups $F_{4}$ and $E_{6}$ is $3^{12}$.
Publié le : 2004-05-15
Classification:  55Q52
@article{1250283581,
     author = {Theriault, Stephen D.},
     title = {Homotopy exponents of Harper's spaces},
     journal = {J. Math. Kyoto Univ.},
     volume = {44},
     number = {4},
     year = {2004},
     pages = { 33-42},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250283581}
}
Theriault, Stephen D. Homotopy exponents of Harper’s spaces. J. Math. Kyoto Univ., Tome 44 (2004) no. 4, pp.  33-42. http://gdmltest.u-ga.fr/item/1250283581/