The 5-primary homotopy exponent of the exceptional Lie group $E_8$
Theriault, Stephen D.
J. Math. Kyoto Univ., Tome 44 (2004) no. 4, p. 569-593 / Harvested from Project Euclid
We construct a new homotopy fibration at the prime 5, involving $E_{8}$ and Harper’s rank two finite mod-5 $H$-space. We then use this to show that the 5-primary homotopy exponent of $E_{8}$ is bounded above by $5^{31}$, which is at most one power of 5 from being optimal.
Publié le : 2004-05-15
Classification:  55Q52
@article{1250283084,
     author = {Theriault, Stephen D.},
     title = {The 5-primary homotopy exponent of the exceptional Lie group $E\_8$},
     journal = {J. Math. Kyoto Univ.},
     volume = {44},
     number = {4},
     year = {2004},
     pages = { 569-593},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250283084}
}
Theriault, Stephen D. The 5-primary homotopy exponent of the exceptional Lie group $E_8$. J. Math. Kyoto Univ., Tome 44 (2004) no. 4, pp.  569-593. http://gdmltest.u-ga.fr/item/1250283084/