Vorticity existence of an ideal incompressible fluid in $B^0_{\infty , 1} (\mathbb{R}^3) \cap L^p(\mathbb{R}^3)$
Pak, Hee Chul ; Park, Young Ja
J. Math. Kyoto Univ., Tome 45 (2005) no. 4, p. 1-20 / Harvested from Project Euclid
We prove a local (in time) unique vorticity existence for the Euler equation of an ideal incompressible fluid in a critical Besov space $\mathbf{B}_{\infty , 1}^{0}(\mathbb{R}^3) \cap \mathbf{L}^{p}(\mathbb{R}^3)$ with the initial vorticity $\omega _{0} \in \mathbf{B}_{\infty , 1}^{0}(\mathbb{R}^3) \cap \mathbf{L}^{p}(\mathbb{R}^3)$ for some $1 < p < 3$.
Publié le : 2005-05-15
Classification:  35Q35,  76B03
@article{1250282965,
     author = {Pak, Hee Chul and Park, Young Ja},
     title = {Vorticity existence of an ideal incompressible fluid in $B^0\_{\infty , 1} (\mathbb{R}^3) \cap L^p(\mathbb{R}^3)$},
     journal = {J. Math. Kyoto Univ.},
     volume = {45},
     number = {4},
     year = {2005},
     pages = { 1-20},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250282965}
}
Pak, Hee Chul; Park, Young Ja. Vorticity existence of an ideal incompressible fluid in $B^0_{\infty , 1} (\mathbb{R}^3) \cap L^p(\mathbb{R}^3)$. J. Math. Kyoto Univ., Tome 45 (2005) no. 4, pp.  1-20. http://gdmltest.u-ga.fr/item/1250282965/