The ideal boundary of the Sol group
Kim, Sungwoon
J. Math. Kyoto Univ., Tome 45 (2005) no. 4, p. 257-263 / Harvested from Project Euclid
We obtain equations of geodesic lines in the Lie group Sol and prove that the ideal boundary of the Sol is a set $\mathcal{R} = \{(x, y, z)| xy = 0,\text{ and } x^{2} +y^{2}+z^{2} = 1\}$ with a degenerate Tits metric, i.e., the distance between different points equals $\infty$.
Publié le : 2005-05-15
Classification:  53C22,  57M50
@article{1250281989,
     author = {Kim, Sungwoon},
     title = {The ideal boundary of the Sol group},
     journal = {J. Math. Kyoto Univ.},
     volume = {45},
     number = {4},
     year = {2005},
     pages = { 257-263},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250281989}
}
Kim, Sungwoon. The ideal boundary of the Sol group. J. Math. Kyoto Univ., Tome 45 (2005) no. 4, pp.  257-263. http://gdmltest.u-ga.fr/item/1250281989/