On dense orbits in the boundary of a Coxeter system
Hosaka, Tetsuya
J. Math. Kyoto Univ., Tome 45 (2005) no. 4, p. 627-631 / Harvested from Project Euclid
In this paper, we study the minimality of the boundary of a Coxeter system. We show that for a Coxeter system $(W, S)$ if there exist a maximal spherical subset $T$ of $S$ and an element $s_{0} \in S$ such that $m(s_{0}, t) \geq 3$ for each $t \in T$ and $m(s_{0}, t_{0}) = \infty$ for some $t_{0} \in T$, then every orbit $W\alpha$ is dense in the boundary $\partial \Sigma (W, S)$ of the Coxeter system $(W, S)$, hence $\partial \Sigma (W, S)$ is minimal, where $m(s_{0}, t)$ is the order of $s_{0}t$ in $W$.
Publié le : 2005-05-15
Classification:  57M07,  20F55,  20F65
@article{1250281975,
     author = {Hosaka, Tetsuya},
     title = {On dense orbits in the boundary of a Coxeter system},
     journal = {J. Math. Kyoto Univ.},
     volume = {45},
     number = {4},
     year = {2005},
     pages = { 627-631},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250281975}
}
Hosaka, Tetsuya. On dense orbits in the boundary of a Coxeter system. J. Math. Kyoto Univ., Tome 45 (2005) no. 4, pp.  627-631. http://gdmltest.u-ga.fr/item/1250281975/