On the annihilation of local cohomology modules
Asadollahi, Javad ; Salarian, Shokrollah
J. Math. Kyoto Univ., Tome 46 (2006) no. 4, p. 357-365 / Harvested from Project Euclid
Let $R$ be a (not necessary finite dimensional) commutative noetherian ring and let $C$ be a semi-dualizing module over $R$. There is a generalized Gorenstein dimension with respect to $C$, namely $\mathrm{G}_{C}$-dimension, sharing the nice properties of Auslander’s Gorenstein dimension. In this paper, we establish the Faltings’ Annihilator Theorem and it’s uniform version (in the sense of Raghavan) for local cohomology modules over the class of finitely generated $R$-modules of finite $\mathrm{G}_{C}$-dimension, provided $R$ is Cohen-Macaulay. Our version contains variations of results already known on the Annihilator Theorem.
Publié le : 2006-05-15
Classification:  13D45,  13D05,  13H10
@article{1250281781,
     author = {Asadollahi, Javad and Salarian, Shokrollah},
     title = {On the annihilation of local cohomology modules},
     journal = {J. Math. Kyoto Univ.},
     volume = {46},
     number = {4},
     year = {2006},
     pages = { 357-365},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250281781}
}
Asadollahi, Javad; Salarian, Shokrollah. On the annihilation of local cohomology modules. J. Math. Kyoto Univ., Tome 46 (2006) no. 4, pp.  357-365. http://gdmltest.u-ga.fr/item/1250281781/