Global existence on nonlinear Schrödinger-IMBq equations
Cho, Yonggeun ; Ozawa, Tohru
J. Math. Kyoto Univ., Tome 46 (2006) no. 4, p. 535-552 / Harvested from Project Euclid
In this paper, we consider the Cauchy problem of Schrödinger-IMBq equations in $\mathbb{R}^{n}$, $n \geq 1$. We first show the global existence and blowup criterion of solutions in the energy space for the 3 and 4 dimensional system without power nonlinearity under suitable smallness assumption. Secondly the global existence is established to the system with $p$-powered nonlinearity in $H^{s}(\mathbb{R}^{n})$, $n = 1,2$ for some $\frac{n}{2} < s < \mathrm{min}(2, p)$ and some $p > \frac{n}{2}$ . We also provide a blowup criterion for $n = 3$ in Triebel-Lizorkin space containing BMO space naturally.
Publié le : 2006-05-15
Classification:  35Q55,  35Q53,  47J35
@article{1250281748,
     author = {Cho, Yonggeun and Ozawa, Tohru},
     title = {Global existence on nonlinear Schr\"odinger-IMBq equations},
     journal = {J. Math. Kyoto Univ.},
     volume = {46},
     number = {4},
     year = {2006},
     pages = { 535-552},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250281748}
}
Cho, Yonggeun; Ozawa, Tohru. Global existence on nonlinear Schrödinger-IMBq equations. J. Math. Kyoto Univ., Tome 46 (2006) no. 4, pp.  535-552. http://gdmltest.u-ga.fr/item/1250281748/