Inverse functions of Grötzsch’s and Teichmüller’s modulus functions
Yamashita, Shinji
J. Math. Kyoto Univ., Tome 43 (2003) no. 4, p. 771-805 / Harvested from Project Euclid
Let $\chi$ be the inverse of the Grötzsch modulus function and let $\sigma _{n}$ be the $n$-th iteration of the function $\sigma (r) = 2\sqrt{r}/(1 + r)$, $r > 0$. For a real constant $\beta \neq 0$ with $\beta >-2$, the difference $\chi (x)^{\beta}-\sigma _{n}(4e^{-2^{n}x})^{\beta}$ is estimated. In the particular case where $\beta =-2$ one has an approximation of the inverse $S$ of the Teichmüller modulus function, which is applied to improving the known upper and lower estimates concerning the error term of $\lambda (K) = \chi (\pi K/2)^{-2} -1$ from $16^{-1}e^{\pi K}-2^{-1}$ for the variable $K \geqslant 1$. Expressions of $\chi$ and $S$ in terms of theta functions are studied. Lipschitz continuity of $f$ or log $f$ for $f = \chi , S$, as well as other functions are proved.
Publié le : 2003-05-15
Classification:  30C20,  30C62,  33E05
@article{1250281735,
     author = {Yamashita, Shinji},
     title = {Inverse functions of Gr\"otzsch's and Teichm\"uller's modulus functions},
     journal = {J. Math. Kyoto Univ.},
     volume = {43},
     number = {4},
     year = {2003},
     pages = { 771-805},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250281735}
}
Yamashita, Shinji. Inverse functions of Grötzsch’s and Teichmüller’s modulus functions. J. Math. Kyoto Univ., Tome 43 (2003) no. 4, pp.  771-805. http://gdmltest.u-ga.fr/item/1250281735/