Compact radial operators on the harmonic Bergman space
Lee, Young Joo
J. Math. Kyoto Univ., Tome 44 (2004) no. 4, p. 769-777 / Harvested from Project Euclid
We study the characterizing problem of the compactness of radial operators on the harmonic Bergman space. We show that under an oscillation condition, the compactness is equivalent to the boundary vanishing conditions of the certain Berezin transforms. As an application, we characterize compact Toeplitz operators with radial symbol on the harmonic Bergman space.
Publié le : 2004-05-15
Classification:  47B38,  47B35
@article{1250281697,
     author = {Lee, Young Joo},
     title = {Compact radial operators on the harmonic Bergman space},
     journal = {J. Math. Kyoto Univ.},
     volume = {44},
     number = {4},
     year = {2004},
     pages = { 769-777},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250281697}
}
Lee, Young Joo. Compact radial operators on the harmonic Bergman space. J. Math. Kyoto Univ., Tome 44 (2004) no. 4, pp.  769-777. http://gdmltest.u-ga.fr/item/1250281697/