The reverse-order law $(AB)^{\dag}=B^{\dag}(A^{\dag}ABB^{\dag})^{\dag}A^{\dag}$ and its equivalent equalities
Tian, Yongge
J. Math. Kyoto Univ., Tome 45 (2005) no. 4, p. 841-850 / Harvested from Project Euclid
This paper collects 26 conditions for the reverse-order law $(AB)^{\dagger} = B^{\dagger}(A^{\dagger}ABB^{\dagger})^{\dagger}A^{\dagger}$ to hold for the Moore-Penrose inverse of matrix.
Publié le : 2005-05-15
Classification:  15A09
@article{1250281660,
     author = {Tian, Yongge},
     title = {The reverse-order law $(AB)^{\dag}=B^{\dag}(A^{\dag}ABB^{\dag})^{\dag}A^{\dag}$ and its equivalent equalities},
     journal = {J. Math. Kyoto Univ.},
     volume = {45},
     number = {4},
     year = {2005},
     pages = { 841-850},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250281660}
}
Tian, Yongge. The reverse-order law $(AB)^{\dag}=B^{\dag}(A^{\dag}ABB^{\dag})^{\dag}A^{\dag}$ and its equivalent equalities. J. Math. Kyoto Univ., Tome 45 (2005) no. 4, pp.  841-850. http://gdmltest.u-ga.fr/item/1250281660/