Representations of ${\rm SU}(p,q)$ and CR geometry I
Wang, Wei
J. Math. Kyoto Univ., Tome 45 (2005) no. 4, p. 759-780 / Harvested from Project Euclid
The CR geometry is applied to the representation theory of the group $\mathrm{SU}(p, q)$. We prove that the kernel of the CR Yamabe operator on a CR manifold $M$ is a representation of the conformal CR automorphism group of M. So we can construct a representations of $\mathrm{SU}(p, q)$ on the kernel of the CR Yamabe operator on the projective hyperquadric $\Bar{Q}_{p,q}$. This is a complex version of Kobayashi-Orsted's model of the minimal irreducible unitary representation $\varpi _{p,q}$ of $\mathrm{SO}(p, q)$ on $S^{p-1} \times S^{q-1}$.
Publié le : 2005-05-15
Classification:  32V20,  22E46,  43A65
@article{1250281656,
     author = {Wang, Wei},
     title = {Representations of ${\rm SU}(p,q)$ and CR geometry I},
     journal = {J. Math. Kyoto Univ.},
     volume = {45},
     number = {4},
     year = {2005},
     pages = { 759-780},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1250281656}
}
Wang, Wei. Representations of ${\rm SU}(p,q)$ and CR geometry I. J. Math. Kyoto Univ., Tome 45 (2005) no. 4, pp.  759-780. http://gdmltest.u-ga.fr/item/1250281656/